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Abstract
We study the Fredholm minors associated with a Fredholm equation of the
second type. We present a couple of new linear recursion relations involving
the nth and (n−1)th minors, whose solution is a representation of the nth minor
as an n×n determinant of resolvents. The latter is given a simple interpretation
in terms of a path integral over non-interacting fermions. We also provide an
explicit formula for the functional derivative of a Fredholm minor of order n
with respect to the kernel. Our formula is a linear combination of the nth and
the (n ± 1)th minors.

PACS numbers: 02.30.Rz, 02.30.Sa, 02.30.Tb, 03.70.+k

1. Introduction

The ubiquity of linear integral equations, and in particular of Fredholm equations (FE) [1–3],
in mathematical physics, and more broadly in analysis, cannot be overstated. Thus, new
results in this classical field, such as those presented in this paper (equations (2.11) and
(4.9)), should be of some interest: equation (2.11) expresses Fredholm’s nth minor (1.8) as a
determinant of resolvents (A.2) of the equation, and equation (4.9) is a formula which gives
the functional derivative of the nth minor (with respect to the kernel) in terms of the nth and
(n ± 1)th minors in closed form. In addition, in section 3 we make a quantum-field-theoretic
interpretation of our determinantal representation (2.11) as a correlator of non-interacting
fermions.
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To get oriented, let us briefly recall the basic definitions and facts of the Fredholm theory,
relevant to our discussion. (We have adopted throughout this paper the conventions and
notation of chapter 2 of [3].) Thus, consider a Fredholm integral equation of the second type
in the unknown function φ(x),

φ(x) = f (x) + λ

∫
�

N(x, y)φ(y) dy (1.1)

with kernel N(x, y) and given function f (x). For simplicity, we shall take N(x, y) and f (x)

as real functions. The generalization to the complex case is straightforward. The complex
variable λ is the spectral parameter of the equation, and � is the domain on which the equation
is defined. To be concrete, we shall take � as a compact domain of the N-dimensional
Euclidean space of volume V∫

�

dx = V. (1.2)

We further assume that N(x, y) is bounded on �

|N(x, y)| � M (1.3)

and that it is integrable in � with respect to both x and y. The given function f (x) is assumed
integrable as well.

It is also useful to introduce the operator N̂ and the vectors |φ〉 and |f 〉, which correspond
to the kernel N(x, y) and functions φ(x) and f (x). Thus, in obvious notation,

N(x, y) = 〈x|N̂ |y〉 f (x) = 〈x|f 〉 and φ(x) = 〈x|φ〉. (1.4)

In terms of (1.4), we can write Fredholm’s equation (1.1) as

(1 − λN̂)|φ〉 = |f 〉. (1.5)

Next, we define the n × n determinant

N


x1 x2 · · · xn

y1 y2 · · · yn


 = det

i,j
N(xi, yj ) (1.6)

where x1, . . . , yn is a set of 2n points in �. We shall refer to the xi as the row indices, and
to the yj as the column indices of the symbol on the left-hand side of (1.6). In some of
the mathematical literature (1.6) is known as the Fredholm determinant; however, we shall
reserve this name, as is customary in vast portions of the physics and mathematics literature,
to Fredholm’s first series D(λ) defined below in (1.9).

Given (1.3), it follows from a theorem due to Hadamard that (1.6) is bounded
according to ∣∣∣∣∣∣N


x1 x2 · · · xn

y1 y2 · · · yn




∣∣∣∣∣∣ � n
n
2 Mn. (1.7)

Fredholm’s nth minor is defined by the series

Dn


x1 x2 · · · xn

y1 y2 · · · yn

∣∣∣∣∣∣ λ

 = N


x1 x2 · · · xn

y1 y2 · · · yn




+
∞∑

p=1

(−λ)p

p!

∫
�

N


x1 x2 · · · xn s1 s2 · · · sp

y1 y2 · · · yn s1 s2 · · · sp


 ds1 . . . dsp

(1.8)
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By definition, Dn is completely antisymmetric in the xi , and also in the yi . In view of (1.2)
and (1.7), it is easy to see that the series (1.8) converges absolutely to an entire function of λ.

Fredholm’s first series

D(λ) = 1 +
∞∑

p=1

(−λ)p

p!

∫
�

N


s1 s2 · · · sp

s1 s2 · · · sp


 ds1 . . . dsp (1.9)

and second series

D(x, y; λ) = N(x, y) +
∞∑

p=1

(−λ)p

p!

∫
�

N


x s1 s2 · · · sp

y s1 s2 · · · sp


 ds1 . . . dsp (1.10)

correspond to setting n = 0 and n = 1 in (1.8), respectively.
Fredholm’s first series (1.9) is, by construction, the functional determinant

D(λ) = Det(1 − λN̂) (1.11)

of the operator on the left-hand side of (1.5). It is usually known in the literature as the
Fredholm determinant associated with (1.1), and we shall adhere to this convention here.

From the definitions (1.8) and (1.9) we can prove the important relation

dnD(λ)

dλn
= (−1)n

∫
�

Dn


x1 x2 · · · xn

x1 x2 · · · xn

∣∣∣∣∣∣ λ

 dx1 . . . dxn (1.12)

in a straightforward manner.
The motivation for introducing the minors stems from their important roles in solving

Fredholm’s equation (1.1) in the most general case. This is briefly reviewed in the appendix.
In particular, for values of λ such that D(λ) �= 0, the solution of (1.1) is determined by the
resolvent kernel R(x, y; λ) according to (A.1). R(x, y; λ), in turn, is given in (A.2) as D(x,y;λ)

D(λ)
.

For values of λ such that D(λ) = 0, the solution is given by (A.6) and (A.10), and involves
the higher minors.

The rest of the paper is organized as follows. In the next section we derive our new
recursion relations (equations (2.7) and (2.8)) for the minors (1.8). We then solve them and
obtain the representation (2.11) for (1.8) as an n × n determinant over resolvents. In section 3
we provide an interpretation of this representation in terms of non-interacting fermions.
Finally, in section 4 we provide an explicit formula (equation (4.9)) for the functional derivative
of the nth minor with respect to the kernel.

2. The minor Dn as an n × n determinant

We start by deriving a couple of integral equations satisfied by Dn [3]. To obtain the first
equation, expand each of the determinants in the series (1.8) with respect to the row xi , and
integrate with respect to all the s-variables which occur in that term. It is easy to see, by
elementary permutations of rows and columns, that in the pth term, all columns s1, . . . , sp

yield the same integrated contribution. Then, after resumming over p, one obtains

Dn


x1 · · · xn

y1 · · · yn

∣∣∣∣∣∣ λ



=
n∑

k=1

(−1)i+kN(xi, yk)Dn−1


x1 · · · x/i · · · · · · xn

y1 · · · · · · y/k · · · yn

∣∣∣∣∣∣ λ


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+ λ

∫
�

N(xi, s)Dn


x1 · · · (x/i)s · · · xn

y1 · · · · · · · · · yn

∣∣∣∣∣∣ λ

 ds (2.1)

where the symbol x/i in the upper row of Dn−1 indicates that the row index xi is to be omitted
from the string x1, . . . , xn (and similarly for y/k in the lower row there), and (x/i)s indicates
that xi in the upper row of Dn under the integral should be replaced by the integration
variable s.

The second integral equation satisfied by Dn is obtained similarly, by expanding each of
the determinants in the series (1.8) with respect to the column yi . One obtains

Dn


x1 · · · xn

y1 · · · yn

∣∣∣∣∣∣ λ



=
n∑

k=1

(−1)i+kN(xk, yi)Dn−1


x1 · · · x/k · · · · · · xn

y1 · · · · · · y/i · · · yn

∣∣∣∣∣∣ λ



+ λ

∫
�

N(s, yi)Dn


x1 · · · · · · · · · xn

y1 · · · (y/i)s · · · yn

∣∣∣∣∣∣ λ

 ds. (2.2)

We now proceed to derive our own results. We assume henceforth that D(λ) �= 0. In this
case, according to (A.1), Fredholm’s equation (1.1) has a unique solution

φ(x) = f (x) + λ

∫
�

R(x, y; λ)f (y) dy. (2.3)

From this solution we construct the quantity

�n


x1 · · · · · · · · · xn

y1 · · · y/i · · · yn

∣∣∣∣∣∣ λ

 = λ

∫
�

Dn


x1 · · · · · · · · · xn

y1 · · · yi · · · yn

∣∣∣∣∣∣ λ

 φ(yi) dyi.

(2.4)

Then, we expand the Dn under the integral on the right-hand side of (2.4) according to (2.2).
By exploiting the fact that λ

∫
�

N(x, y)φ(y) dy = φ(x) − f (x) = λ
∫
�

R(x, y; λ)f (y) dy

from (1.1) and (2.3), we note that there appears a �n on the right-hand side of the equation,
which cancels the original one on the left, leaving us with the identity∫

�

Dn


x1 · · · · · · · · · xn

y1 · · · yi · · · yn

∣∣∣∣∣∣ λ

 f (yi) dyi

=
n∑

k=1

(−1)i+k

∫
�

R(xk, yi; λ)Dn−1


 x1 · · · x/k · · · · · · xn

y1 · · · · · · y/i · · · yn

∣∣∣∣∣∣ λ

f (yi) dyi.

(2.5)

Since this identity holds for all admissible given functions f (x), we conclude that Dn must
satisfy the recursion relation

Dn


x1 · · · xn

y1 · · · yn

∣∣∣∣∣∣ λ

 =

n∑
k=1

(−1)i+kR(xk, yi; λ)Dn−1


x1 · · · x/k · · · · · · xn

y1 · · · · · · y/i · · · yn

∣∣∣∣∣∣ λ


(2.6)
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or equivalently,

D(λ)Dn


x1 · · · xn

y1 · · · yn

∣∣∣∣∣∣ λ



=
n∑

k=1

(−1)i+kD(xk, yi; λ)Dn−1


x1 · · · x/k · · · · · · xn

y1 · · · · · · y/i · · · yn

∣∣∣∣∣∣ λ

 (2.7)

from (A.2). Similarly, from (2.1), and by exploiting the associated (or transposed) Fredholm
equation ψ(x) = g(x) + λ

∫
�

ψ(y)N(y, x) dy, we obtain the transposed identity

D(λ)Dn


x1 · · · xn

y1 · · · yn

∣∣∣∣∣∣ λ



=
n∑

k=1

(−1)i+kD(xi, yk; λ)Dn−1


x1 · · · x/i · · · · · · xn

y1 · · · · · · y/k · · · yn

∣∣∣∣∣∣ λ

 . (2.8)

The two identities (2.7) and (2.8) strongly suggest that the quantity

�n


x1 · · · xn

y1 · · · yn

∣∣∣∣∣∣ λ

 = 1

D(λ)
Dn


x1 · · · xn

y1 · · · yn

∣∣∣∣∣∣ λ

 (2.9)

is simply the n × n determinant with entries R(xi, yj ; λ) and corresponding minor

�n−1


x1 · · · x/k · · · · · · xn

y1 · · · · · · y/i · · · yn

∣∣∣∣∣∣ λ

 .

The proof of this proposition by induction is almost trivial: this proposition is indeed the
content of (2.7) and (2.8) for n = 2:

D(λ)D2


x1 x2

y1 y2

∣∣∣∣∣∣ λ

 = D(x1, y1; λ)D(x2, y2; λ) − D(x1, y2; λ)D(x2, y1; λ). (2.10)

(For n = 1, (2.7) and (2.8) yield a trivial identity.) Then, by assuming it holds for �n−1, we
apply it to the �n−1 which appear on the right-hand sides of (2.7) and (2.8), and thus observe
that the latter are just the expansion of an n×n determinant with entries R(xi, yj ; λ) according
to the ith column and ith row, respectively. The proposition of the induction is thus verified
for �n as well.

Thus, we have derived our first main result:

1

D(λ)
Dn


x1 · · · xn

y1 · · · yn

∣∣∣∣∣∣ λ

 = det

ij
R(xi, yj ; λ). (2.11)

Note that for n = 1, (2.11) coincides with (A.2), as it should.

3. Interpretation of (2.11) in terms of non-interacting fermions

The determinantal representation (2.11) suggests, due to Wick’s theorem for non-interacting
fermions, an interpretation of Dn as the correlation function of n fermions and n anti-fermions.
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To this end, consider the non-interacting complex Grassmann-valued field ψ(x), living
on �, with the action

S =
∫

�

ψ †(x) [δ(x − y) − λN(x, y)] ψ(y) dx dy. (3.1)

Its partition function [4] is given by the path integral

Z =
∫

Dψ †DψeS = Det(1 − λN̂) = D(λ). (3.2)

As is well known from the annals of quantum field theory, the non-vanishing correlation
functions of (3.2) are those which contain equal numbers of ψ and ψ †, namely,

〈ψ †(y1)ψ(x1) · · · ψ †(yn)ψ(xn)〉 = 1

Z

∫
Dψ †DψeS[ψ †(y1)ψ(x1) · · · ψ †(yn)ψ(xn)]. (3.3)

The latter are determined according to Wick’s theorem as

〈ψ †(y1)ψ(x1) · · · ψ †(yn)ψ(xn)〉 = det
ij

〈ψ †(yi)ψ(xj )〉 (3.4)

where the two-point function is

〈ψ †(y)ψ(x)〉 = 〈x| 1

1 − λN̂
|y〉. (3.5)

Then, note from (3.5) and (A.3) that∫
�

N(x, z)〈ψ †(y)ψ(z)〉 dz = 〈x| N̂

1 − λN̂
|y〉 = R(x, y; λ). (3.6)

Thus, by linearity, we obtain from (3.4) and (3.6) that

〈ψ †(y1)(N̂ψ)(x1) · · · ψ †(yn)(N̂ψ)(xn)〉 = det
ij

R(xi, yj ; λ) (3.7)

where (N̂ψ)(x) = ∫
�

N(x, y)ψ(y) dy. Thus, we interpret the nth minor Dn, according to
(2.11) and (3.7), as the multi-fermion correlator

Dn


x1 · · · xn

y1 · · · yn

∣∣∣∣∣∣ λ

 = D(λ)〈ψ †(y1)(N̂ψ)(x1) · · · ψ †(yn)(N̂ψ)(xn)〉

=
∫

Dψ †DψeS[ψ †(y1)(N̂ψ)(x1) · · · ψ †(yn)(N̂ψ)(xn)] (3.8)

that is, Dn is the 2nth moment of the Grassmann weight eS (convoluted against n powers of
N̂ ). As such, it might be thought of as some kind of a continuum (supplementary) compound
matrix associated with 1−λN̂ [5]. The latter interpretation might be useful in studying minors
of very large order, such that the 2n points xi and yi become typically dense in �.

As a consistency check of (3.8), let us trace it over all coordinates, and see if we recover
(1.12). Thus,∫

�

Dn


x1 · · · xn

x1 · · · xn

∣∣∣∣∣∣ λ

 dx1 · · · dxn

= D(λ)

∫
�

〈ψ †(x1)(N̂ψ)(x1) · · · ψ †(xn)(N̂ψ)(xn)〉 dx1 · · · dxn

= D(λ)

〈 (∫
�

ψ †(x)(N̂ψ)(x) dx

)n
〉
. (3.9)



Fredholm’s minors of arbitrary order 6305

From (3.1), (3.2) and (3.3), we see that〈 (∫
�

ψ †(x)(N̂ψ)(x)

)n
〉

= 1

D(λ)

(
− d

dλ

)n

D(λ). (3.10)

Thus,

∫
�

Dn


x1 · · · xn

x1 · · · xn

∣∣∣∣∣∣ λ

 dx1 · · · dxn =

(
− d

dλ

)n

D(λ)

in accordance with (1.12).

4. The functional derivative of Dn with respect to the kernel

As we have discussed above, the minors Dn (1.8) determine the solution of the Fredholm
equation (1.1). In some applications of (1.1), the kernel N(x, y) may depend on a set of
parameters or functions, and it may be important to determine how the solutions vary with
these quantities. To this end we have first to determine the functional derivative of the minors
Dn with respect to the kernel.

For example, in a recent paper [6], we have calculated the variation of the solution of the
Gelfand–Levitan–Marchenko equation with the reflection amplitude of scattering theory, and
deduced from it the corresponding variation of the Schrödinger potential and wavefunction.

The minor Dn is expressed in (2.11) in terms of D(λ) and R(x, y; λ). It is straightforward
to obtain the functional derivatives of these two objects with respect to the kernel N(x, y)

directly from (1.11) and (A.3). Thus, consider a perturbation N̂ → N̂ + δN̂ . From (1.11) we
see that under this variation δD(λ) = D(λ)δ log D(λ) = −λD(λ)tr

(
1

1−λN̂
δN̂

)
, from which

we infer
δD(λ)

δN(a, b)
= −λD(λ) [δ(b − a) + λR(b, a; λ)]

= −λD(λ)δ(b − a) − λ2D(b, a; λ). (4.1)

Under this variation we also have R̂ → R̂ + 1
1−λN̂

δN̂ 1
1−λN̂

. Consequently

δR(x, y; λ)

δN(a, b)
= 〈x|(1 + λR̂)|a〉〈b|(1 + λR̂)|y〉
= (δ(x − a) + λR(x, a; λ)) (δ(b − y) + λR(b, y; λ)) . (4.2)

We can then calculate
δ

δN(a, b)

(
D(λ) det

ij
R(xi, yj ; λ)

)
by applying (4.1) and (4.2) as necessary. The expression we obtain in this way is rather
cumbersome, but the plethora of terms thus obtained can be organized into a linear combination
of the minors Dn and Dn±1.

Instead of pursuing this line of derivation, we shall now sketch the calculation of the
functional derivative of Dn directly from (1.8), by taking the derivative of this series term
by term. Thus, consider taking the derivative of the pth term. Let us split the matrix whose
determinant ∫

�

N


x1 x2 · · · xn sn+1 sn+2 · · · sn+p

y1 y2 · · · yn sn+1 sn+2 · · · sn+p


 dsn+1 · · · dsn+p (4.3)
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is being integrated in that term into four blocks, according to NN, NI, IN and II, where I
stands for an integrated coordinate index, and N for a non-integrated one. Let us now scan
systematically through these blocks.

When the derivative δ
δN(a,b)

hits the term N(xi, yj ) in the NN sector, it produces a factor
δN(xi ,yj )

δN(a,b)
= δ(xi − a)δ(yj − b) which is multiplied by the minor of N(xi, yj ) times a sign

factor (−1)i+j . The total contribution of the NN sector to the derivative is the sum of all these
terms:

NN =
n∑

i,j=1

(−1)i+j δ(xi − a)δ(yj − b)

×
∫

�

N


x1 · · · x/i · · · · · · xn sn+1 · · · sn+p

y1 · · · · · · y/j · · · yn sn+1 · · · sn+p


 dsn+1 · · · dsn+p.

(4.4)

Move now to the NI block. When the derivative δ
δN(a,b)

hits the term N(xi, sn+l ), it produces
a factor δ(xi − a)δ(sn+l − b) which is multiplied by the minor of N(xi, sn+l ), which contains
sn+l as a row index (but not as a column index), times a sign factor (−1)i+n+l . Integration over
sn+l thus replaces the row index sn+l in that minor by b. Now, permute the row which used
to be that of sn+l in that minor, and move it in between the rows corresponding to xi−1 and
xi+1. This means permuting it across n + l − i − 1 rows and costs a sign factor (−1)n+l−i−1,
which combines with the previous sign factor to (−1), independently of l. Thus, all the p
columns which intersect the original row xi in the NI block make the same contribution to the
functional derivative, after integration over the remaining p − 1 variables. Finally, summing
over all the xi in the NI block we obtain the total contribution by that block to the functional
derivative as

NI = −p

n∑
i=1

δ(xi − a)

×
∫

�

N


x1 · · · (x/i)b · · · xn sn+1 · · · sn+p−1

y1 · · · · · · · · · yn sn+1 · · · sn+p−1


 dsn+1 · · · dsn+p−1.

(4.5)

Similarly, the contribution of the entire IN block to the functional derivative is

IN = −p

n∑
j=1

δ(yj − b)

×
∫

�

N


x1 · · · · · · · · · xn sn+1 · · · sn+p−1

y1 · · · (y/j )a · · · yn sn+1 · · · sn+p−1


 dsn+1 · · · dsn+p−1.

(4.6)

The last block is II. Clearly, we should discuss the diagonal terms and the non-diagonal
terms separately. When δ

δN(a,b)
hits the diagonal term N(sn+l , sn+l ), it produces a factor

δ(sn+l − a)δ(sn+l − b) times the corresponding diagonal minor, which comes with a positive
sign and does not depend on sn+l . Thus, integration over sn+l simply produces a factor δ(a−b)
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which multiplies the remaining integral. The latter is the same for all diagonal terms. Thus,
the overall contribution of diagonal terms from the II block to the functional derivative is

IIdiag = pδ(a − b)

∫
�

N


x1 · · · xn sn+1 · · · sn+p−1

y1 · · · yn sn+1 · · · sn+p−1


 dsn+1 · · · dsn+p−1. (4.7)

Finally, when δ
δN(a,b)

hits the non-diagonal term N(sn+l , sn+k), l �= k, it produces a factor
δ(sn+l − a)δ(sn+k − b) times the minor of N(sn+l , sn+k), which contains sn+k as a row index
(but not as a column index), and also contains sn+l as a column index (but not as a row index),
times a sign factor (−1)n+k+n+l .

Integration over sn+l thus replaces the column index sn+l in that minor by a. Similarly,
integration over sn+k replaces the row index sn+k by b. Now, move the row which used to be
that of sn+k right below the row xn, and the column which used to be that of sn+l immediately
to the right of the column yn. These permutations produce a sign factor (−1)k−1+l−1−1, which
combines with the previous sign simply to (−1). The remaining integral is independent of sk

and sl and yields the same contribution for all the p(p − 1) non-diagonal terms. Thus, their
total contribution to the functional derivative is

IInon-diag = −p(p − 1)

∫
�

N


x1 · · · xn b sn+1 · · · sn+p−2

y1 · · · yn a sn+1 · · · sn+p−2


 dsn+1 · · · dsn+p−2.

(4.8)

Gathering all contributions (4.4)–(4.8) together, multiplying their sum by (−λ)p

p! and summing
over p, we finally arrive, after some rearrangement of terms, at our second main result:

δ

δN(a, b)
Dn


x1 · · · xn

y1 · · · yn

∣∣∣∣∣∣ λ



=
n∑

i,j=1

(−1)i+j δ(xi − a)δ(yj − b)Dn−1


x1 · · · x/i · · · · · · xn

y1 · · · · · · y/j · · · yn

∣∣∣∣∣∣ λ



+ λ

n∑
i=1

δ(xi − a)Dn


x1 · · · (x/i)b · · · xn

y1 · · · · · · · · · yn

∣∣∣∣∣∣ λ



+ λ

n∑
j=1

δ(yj − b)Dn


x1 · · · . . . · · · xn

y1 · · · (y/j )a · · · yn

∣∣∣∣∣∣ λ



− λδ(a − b)Dn


x1 · · · xn

y1 · · · yn

∣∣∣∣∣∣ λ

 − λ2Dn+1


x1 · · · xn b

y1 · · · yn a

∣∣∣∣∣∣ λ

 .

(4.9)
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It is gratifying that the functional derivative of Dn is expressed as a relatively simple linear
combination of Dn and Dn±1. In particular, we could think of (4.9) as recursively defining
Dn+1 in terms of the lower minors. This is analogous to Jacobi’s recursive definition of
supplementary compound matrices in the finite-dimensional case [5]. The formula (4.9) for
the functional derivative of Dn should coincide, of course, with the expression we would
obtain by taking the derivative of D(λ) detij R(xi, yj ; λ).

As a simple application, let us check (4.9) for n = 0 and n = 1. For n = 0, it yields

δD(λ)

δN(a, b)
= − λδ(a − b)D(λ) − λ2D(b, a; λ)

which coincides with (4.1). Similarly, for n = 1, we obtain

δD(x, y; λ)

δN(a, b)
= δ(x − a)δ(y − b)D(λ) + λδ(x − a)D(b, y; λ) + λδ(y − b)D(x, a; λ)

− λδ(a − b)D(x, y; λ) − λ2D2

(
x b

y a

∣∣∣∣ λ
)

. (4.10)

Thus, from the last two equations we can derive that

δR(x, y; λ)

δN(a, b)
= δ

δN(a, b)

(
D(x, y; λ)

D(λ)

)

= δ(x − a)δ(y − b) + λδ(x − a)R(b, y; λ) + λδ(y − b)R(x, a; λ)

+ λ2

(
R(x, y; λ)R(b, a; λ) − �2

(
x b

y a

∣∣∣∣ λ
))

(4.11)

which coincides with (4.2) due to our determinantal representation (2.11).
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Appendix: the solution of Fredholm’s equation

The theory of Fredholm’s equation (1.1) and its solution is summarized in Fredholm’s
celebrated three theorems (sometimes referred to collectively as ‘Fredholm’s alternatives’).
The exposition in this appendix will be very telegraphic. We will describe the content of
Fredholm’s theorems in a semi-quantitative way, sufficient for our purposes, and refer the
interested reader to the cited literature for more details.

Broadly speaking, the solution of (1.1) depends on whether D(λ) �= 0 or not:

Case (1): D(λ) �= 0. In this case, the solution of (1.1) involves the n = 1 minor D(x, y; λ).
For values of λ such that D(λ) �= 0, the operator 1− λN̂ is invertible, and (1.1) (or, equivalently
(1.5)) has a unique solution, given by

φ(x) = f (x) + λ

∫
�

R(x, y; λ)f (y) dy (A.1)
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where R(x, y; λ) is the resolvent kernel of (1.1), which is given by

R(x, y; λ) = D(x, y; λ)

D(λ)
. (A.2)

From (1.5) we can read off the operator R̂, which corresponds to R(x, y; λ) = 〈x|R̂|y〉 as

R̂ = 1

λ

(
1

1 − λN̂
− 1

)
= N̂

1 − λN̂
. (A.3)

Thus, from (A.2), (1.12) (at n = 1), (1.11) and (A.3) we conclude that

tr R̂ =
∫

�

R(x, x; λ) dx = − d

dλ
log D(λ) (A.4)

which shows that the poles of R̂ as a function of λ are the zeros of D(λ).

Case (2): D(λ) = 0. If λ = λ0 such that D(λ0) = 0, the homogeneous equation

φ(x) = λ0

∫
�

N(x, y)φ(y) dy (A.5)

has one or more non-trivial, linearly independent solutions �i(x), i = 1, . . . , ν, where ν � 1.
In this case, we say that λ0 is an eigenvalue of N̂ of rank ν, and refer to the functions �i(x) as
the characteristic functions corresponding to the eigenvalue λ0. (This nomenclature deviates
from that of linear algebra, which would refer to 1

λ0
as the eigenvalue.) Any solution of the

homogeneous equation (A.5) is a linear combination of the characteristic functions, i.e. the
characteristic functions span Ker(1 − λ0N̂).

As it turns out, the ν characteristic functions are proportional to the νth minor Dν . More
precisely, for a fixed set of 2ν points x1, . . . , yν , such that

Dν


x1 · · · xν

y1 · · · yν

∣∣∣∣∣∣ λ0


 �= 0

we have

�i(x) =
Dν


x1 · · · (x/i)x · · · xν

y1 · · · yi · · · yν

∣∣∣∣∣∣ λ0




Dν


x1 · · · xν

y1 · · · yν

∣∣∣∣∣∣ λ0




(A.6)

where the symbol (x/i)x indicates that the ith row index xi in the upper row of the minor in the
numerator is to be replaced by the coordinate x. The functions (A.6) are normalized such that

�i(xk) = δi,k (A.7)

as can be seen from (1.8), since Dn vanishes when any two of its row (or column) indices
coincide.

Since the characteristic functions are expressed in terms of Dν , it does not vanish
identically. In fact, it is the minor of lowest order which does not vanish identically as a
function of its 2ν arguments at λ = λ0, and (A.6) is obtained by setting n = ν (and λ = λ0)
in (2.1). Furthermore, it follows from (1.12) that λ0 must be a zero of D(λ) of multiplicity,
which is greater or equal to ν, since dνD(λ)

dλν might still vanish at λ = λ0.
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As for solving the inhomogeneous equation (1.1) at λ = λ0, one proceeds as follows.
First, one has to consider the transposed, or associated homogeneous Fredholm equation

ψ(x) = λ0

∫
�

ψ(y)N(y, x) dy. (A.8)

Since its kernel is the transpose of the kernel of (1.1), it has λ0 as an eigenvalue of the same
rank ν. Thus, there are ν independent characteristic solutions 
i(x), which are also expressed
in terms of the νth minor Dν , similar to (A.6), as


i(x) =
Dν


x1 · · · xi · · · xν

y1 · · · (y/i)x · · · yν

∣∣∣∣∣∣ λ0




Dν


x1 · · · xν

y1 · · · yν

∣∣∣∣∣∣ λ0




(A.9)

which span Ker(1 − λ0N̂
T
).

A necessary and sufficient condition for the existence of a solution of (1.1) at λ = λ0 is
then that the given function f (x) be orthogonal to all the characteristic functions 
i(x), i.e.
that

∫
�


i(x)f (x) = 0, i = 1, . . . , ν.
If this condition holds, the solution (which exists) is not unique, since given a particular

solution, one can always add to it an arbitrary solution of the homogeneous equation (A.5).
The part in the general solution of (1.1) which is linear in f (x) (i.e., a particular solution of
(1.1)) is

φp(x) = f (x) + λ0

∫
�

Dν+1


x x1 · · · xν

y y1 · · · yν

∣∣∣∣∣∣ λ0




Dν


x1 · · · xν

y1 · · · yν

∣∣∣∣∣∣ λ0




f (y) dy. (A.10)
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